

ADDITIONAL MATHEMATICS

0606/13 October/November 2016

Paper 1 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

[Turn over

Page 2	Mark Scheme		Paper
	Cambridge IGCSE – October/November 2016	0606	13

Abbreviations

awrt answers which round to

cao correct answer only

dep dependent

- FT follow through after error
- isw ignore subsequent working oe or equivalent
- rot rounded or truncated
- SC Special Case
- soi seen or implied

WWW	without wro	ong working
-----	-------------	-------------

Question	Answer	Marks	Part Marks
1		B1 B1 B1	for symmetrical shape as in the diagram with curved maxima of equal height and cusps on the <i>x</i> -axis for a complete 'curve' with all low points on the <i>x</i> -axis and all high points on $y = 2$ for a complete 'curve' meeting the <i>x</i> -axis at $x = 30^{\circ}$, 90°, 150° only.
2	$=\frac{4m^2-9}{2m+3}$	M1	for multiplying each term by \sqrt{m} , using a common denominator of \sqrt{m} or for multiplying numerator and denominator by $2\sqrt{m} - \frac{3}{\sqrt{m}}$
	$=\frac{(2m-3)(2m+3)}{2m+3}$	A1	for a correct expression that will cancel $\frac{(2m-3)(2m+3)}{2m+3}, \frac{(4m^2-9)(2m-3)}{(4m^2-9)}$ $\frac{(2m-3)(2m+3)(2m-3)}{(2m+3)(2m-3)}, \text{ or equivalents}$
	= 2m - 3	A1	for $2m-3$ or $A=2, B=-3$
	Alternative Method $(4m\sqrt{m} - \frac{9}{\sqrt{m}})$ $= (2\sqrt{m} + \frac{3}{\sqrt{m}})(Am + B)$	M1	for correct expansion
	Comparing coefficients 2A = 4, 3A + 2B = 0, 3B = -9	A1 A1	for correct comparisons to obtain A and B for $2m-3$ or $A=2$, $B=-3$

Mark Scheme Cambridge IGCSE – October/November 2016

SyllabusPaper060613

Q	uestion	Answer	Marks	Part Marks
3	(i)	$3x^{2} - 2xp + (p+3) = 0$ $(-2p)^{2} - 4 \times 3 \times (p+3) \ge 0$ oe	M1	for obtaining a 3-term quadratic in the form $ax^2 + bx + c(=0)$
			DM1	for correct substitution of <i>their a</i> , <i>b</i> and <i>c</i> into ' $b^2 - 4ac$ 'and use of discriminant.
		$p^2 \ge 3(p+3)$ or $4p^2 - 12p - 36 \ge 0$ $p^2 - 3p - 9 \ge 0$	A1	for full correct working, \geq the only sign used, \geq used before division by 4 and \geq used in answer line and penultimate line.
	(ii)	Correct method of solution $p^2 - 3p - 9 = 0$ leading to critical values	M1	for correct substitution in the quadratic formula or for correct attempt to complete the square. (allow 1 sign error in either method)
		$p = \frac{3 \pm 3\sqrt{5}}{2}$	A1	for both correct critical values
		$p \leqslant \frac{3 - 3\sqrt{5}}{2}, \ p \geqslant \frac{3 + 3\sqrt{5}}{2}$	A1	for correct range
4	(i)	$64 - 48x + 15x^2$	B3	for each correct term
	(ii)	$(4 \times '64') + (2 \times '-48') + (3 \times '15')$	M1	for correctly obtaining three products using <i>their</i> coefficients in (i)
			A1	for two correct out of three products (unsimplified) cao
		= 205 cao	A1	for 205 selected as final answer
5	(i)	$\log_9 xy = \log_9 x + \log_9 y$	M1	for use of $\log AB = \log A + \log B$
		$=\frac{\log_3 x}{\log_3 9} + \frac{\log_3 y}{\log_3 9}$	M1	for correct method for change of base. Division by log ₃ 9 should be seen and not implied.
		$=\frac{\log_3 x}{2} + \frac{\log_3 y}{2} = \frac{5}{2}$		
		$\log_3 x + \log_3 y = 5$	A1	for dealing with 2 correctly and 'finishing off'
		Alternative method		
		$\log_9 xy = \frac{5}{2}$	M1	for obtaining <i>xy</i> as a power of 3
		$xy = 9^{\frac{5}{2}} = 3^5$	M1	for correct use of log ₃
		$log_3 xy = 5$ $log_3 x + log_3 y = 5$	A1	for using law for logs and arriving at correct answer

Mark Scheme Cambridge IGCSE – October/November 2016

Syllabus	Paper
0606	13

Question	Answer	Marks	Part Marks
(ii)	$\log_3 x (5 - \log_3 x) = -6$		
	$-(\log_3 x)^2 + 5\log_3 x = -6$	M1	for substitution, correct expansion of brackets and manipulation to get a 3 term quadratic
	$(\log_3 x)^2 - 5\log_3 x - 6 = 0$	A1	for a correct quadratic equation in the form $ax^2 + bx + c = 0$
	leading to $\log_3 x = 6$, $\log_3 x = -1$	A1	for both solutions
		DM1	for method of solution of $\log_3 x = k$ or $\log_3 y = k$
	$x = 729, x = \frac{1}{3}$		
	$y = \frac{1}{3}, y = 729$	A1	for all x and y correct
6 (i)	$\frac{6x}{3x^2 - 11}$	M1 A1	M1 for $\frac{mx}{3x^2 - 11}$
(ii)	$p = \frac{1}{6}$	B1	FT for $p = \frac{1}{m}$
(iii)	$\frac{1}{6}\ln(3a^2 - 11) - \frac{1}{6}\ln 1 = \ln 2$	M1	for correct use of limits in $p \ln(3x^2 - 11)$ May be implied by following equation
	$\ln\left(3a^2-11\right) = \ln 2^6$	DM1	for dealing with logs correctly
	$3a^2 - 11 = 64$	DM1	for solution of $3a^2 - 11 = k$
	a = 5 only	A1	for 5 obtained from an exact method

Mark Scheme Cambridge IGCSE – October/November 2016

SyllabusPaper060613

Qu	iestion	Answer	Marks	Part Marks
7	(i)	$\ln y = \ln A + \frac{b}{x}$ Gradient: $b = -0.8$ Intercept or use of equation: $\ln A = 4.7$ A = 110	B1 B1 B1 B1	for equation, may be implied, must be using ln unless recovered for $b = -0.8$ oe for ln A = 4.7 oe, allow 4.65 to 4.75 for A = 110, allow 105 to 116
		Alternative Method $3.5 = \ln A + 1.5b$ and $1.5 = \ln A + 4b$ leading to $b = -0.8$ $\ln A = 4.7$ and $A = 110$	B1 B1 B1 B1	Allow A in terms of e for one equation for $b = -0.8$ for $\ln A = 4.7$ for $A = 110$ or $e^{4.7}$
		Alternative Method $e^{1.5} = Ae^{4b}$ $e^{3.5} = Ae^{1.5b}$ leading to $b = -0.8$ and $A = 110$	B1 B1 B1 B1	for $e^{1.5} = Ae^{4b}$ or $4.48 = Ae^{4b}$ for $e^{3.5} = Ae^{1.5b}$ or $33.1 = Ae^{1.5b}$ for $b = -0.8$ for $A = 110$ or $e^{4.7}$
	(ii)	When $x = 0.32$, $\frac{1}{x} = 3.125$, $\ln y = 2.2$ $y = 9$ (allow 8.5 to 9.5) or $e^{2.2}$	M1 A1	for a complete method to obtain <i>y</i> , using either the graph, using <i>their</i> values in the equation for lny or using <i>their</i> values in the equation for <i>y</i> .
	(iii)	When $y = 20$, $\ln y = 3$, $\frac{1}{x} = 2.125$ so $x = 0.47$ (allow 0.45 to 0.49)	M1 A1	for a complete method to obtain <i>x</i> , using either the graph, using <i>their</i> values in the equation for lny or using <i>their</i> values in the equation for <i>y</i> .

Mark Scheme Cambridge IGCSE – October/November 2016

SyllabusPaper060613

8 (a) (i) $\frac{\csc \theta}{\csc \theta - \sin \theta} = \frac{\frac{1}{\sin \theta}}{\frac{1}{\sin \theta} - \sin \theta}$ M1 for using $\csc \theta = \frac{1}{\sin \theta}$ and either attempt to multiply top and bottom by $\sin \theta$ or an attempt to combine terms in denominator. $= \frac{1}{1 - \sin^{2} \theta} \text{ or } = \frac{\frac{1}{\sin \theta}}{\frac{(1 - \sin^{2} \theta)}{\sin \theta}}$ M1 for using $\csc \theta = \frac{1}{\sin \theta}$ and either attempt to combine terms in denominator. $= \frac{1}{\cos^{2} \theta}$ $= \sec^{2} \theta$ A1 for completing the proof Alternative Method using $\csc \theta$ $= \frac{\csc \theta}{\csc \theta - \sin \theta} = \frac{\csc \theta}{\csc \theta - \frac{1}{\csc \theta}}$ A1 for using $\sin \theta = \frac{1}{\csc \theta}$ and an attempt to combine terms in denominator. $= \frac{1 + \cot^{2} \theta}{\cot^{2} \theta}$ $= \tan^{2} \theta + 1 = \sec^{2} \theta$ A1 for using $\sin \theta = \frac{1}{\csc \theta}$ and an attempt to combine terms in denominator. $= \frac{1 + \cot^{2} \theta}{\cot^{2} \theta}$ $= \tan^{2} \theta + 1 = \sec^{2} \theta$ A1 for completing the proof (ii) $\cos^{2} \theta = \frac{1}{4}, \cos \theta = \pm \frac{1}{2}$ or $\tan^{2} \theta = 3, \tan \theta = \pm \sqrt{3}$ or $\sin^{2} \theta = \frac{3}{4}, \sin \theta = \pm \frac{\sqrt{3}}{2}$ A1 for two correct values for two further correct values and no extras in range. (b) $\tan \left(x + \frac{\pi}{4}\right) = \frac{1}{\sqrt{3}}$ M1 for correct order of operations, can be implied by	Question	Answer	Marks	Part Marks
$\begin{aligned} & \begin{array}{c} & \begin{array}{c} & & \\ & \\ \end{array} \\ = \frac{1}{\cos^2 \theta} \\ & = \sec^2 \theta \\ \end{array} \\ & \begin{array}{c} & \\ \end{array} \\ & \begin{array}{c} & \\ \end{array} \\ & \begin{array}{c} \\ \end{array} \\ & \begin{array}{c} \\ \end{array} \\ & \\ \end{array} \\ & \begin{array}{c} \\ \end{array} \\ & \begin{array}{c} \\ \end{array} \\ & \\ \end{array} \\ & \begin{array}{c} \\ \end{array} \\ & \\ \end{array} \\ & \begin{array}{c} \\ \end{array} \\ & \\ \end{array} \\ & \begin{array}{c} \\ \end{array} \\ & \begin{array}{c} \\ \end{array} \\ & \\ \end{array} \\ & \begin{array}{c} \\ \\ \end{array} \\ & \begin{array}{c} \\ \end{array} \\ & \\ \end{array} \\ & \begin{array}{c} \\ \\ \end{array} \\ & \begin{array}{c} \\ \\ \end{array} \\ & \\ \end{array} \\ & \begin{array}{c} \\ \\ \end{array} \\ & \begin{array}{c} \\ \\ \end{array} \\ & \begin{array}{c} \\ \\ \end{array} \\ & \\ \end{array} \\ & \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ & \begin{array}{c} \\ \\ \\ \\ \end{array} \\ & \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ & \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ & \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ & \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ & \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ & \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ & \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ & \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ & \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ & \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ & \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ & \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ & \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ & \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ & \begin{array}{c} \\ \\ \\ \\ \end{array} \\ & \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ & \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ & \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ & \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ & \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ & \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ & \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\$	8 (a) (i)	$\frac{\csc\theta}{\csc\theta - \sin\theta} = \frac{\frac{1}{\sin\theta}}{\frac{1}{\sin\theta} - \sin\theta}$	M1	multiply top and bottom by sin θ or an attempt to
$= \sec^{2} \theta$ Alternative Method using cosec $\frac{\csc \theta}{\csc \theta - \sin \theta} = \frac{\csc \theta}{\csc \theta - \frac{1}{\csc \theta}}$ $= \frac{\csc \theta}{\csc \theta - \sin \theta} = \frac{\csc \theta}{\csc \theta - \frac{1}{\csc \theta}}$ MI $= \frac{1 + \cot^{2} \theta}{\cot^{2} \theta}$ $= \tan^{2} \theta + 1 = \sec^{2} \theta$ Alt if or using $\sin \theta = \frac{1}{\csc \theta}$ and an attempt to combine terms in denominator. for use of $1 + \cot^{2} \theta = \csc^{2} \theta$ Alt if or completing the proof (ii) $\cos^{2} \theta = \frac{1}{4}, \cos \theta = \pm \frac{1}{2}$ or $\tan^{2} \theta = 3, \tan \theta = \pm \sqrt{3}$ $\theta = 60^{\circ}, 120^{\circ}, 240^{\circ}, 300^{\circ}$ Alt if or two correct values for two correct values and no extras in range. (b) $\tan\left(x + \frac{\pi}{4}\right) = \frac{1}{\sqrt{3}}$ Alt if or completing the proof Alt if or correct order of operations, can be implied by π			DM1	for correct use of $1 - \sin^2 \theta = \cos^2 \theta$
$\frac{\csc \theta}{\csc \theta - \sin \theta} = \frac{\csc \theta}{\csc \theta - \frac{1}{\csc \theta}}$ $= \frac{\csc \theta}{\csc \theta - \sin \theta} = \frac{1}{\csc \theta}$ $= \frac{\csc^2 \theta}{\csc^2 \theta - 1}$ $= \frac{1 + \cot^2 \theta}{\cot^2 \theta}$ $= \tan^2 \theta + 1 = \sec^2 \theta$ (ii) $\cos^2 \theta = \frac{1}{4}, \cos \theta = \pm \frac{1}{2}$ $\cos^2 \theta = \frac{1}{4}, \cos \theta = \pm \frac{1}{2}$ $\cos^2 \theta = \frac{1}{4}, \cos \theta = \pm \frac{1}{2}$ $\cos^2 \theta = \frac{1}{4}, \sin \theta = \pm \sqrt{3}$ $\cos^2 \theta = \frac{3}{4}, \sin \theta = \pm \sqrt{3}$ $\theta = 60^\circ, 120^\circ, 240^\circ, 300^\circ$ (b) $\tan \left(x + \frac{\pi}{4}\right) = \frac{1}{\sqrt{3}}$ MI for correct order of operations, can be implied by π		$=\sec^2\theta$	A1	for completing the proof
(ii) $ \begin{aligned} &= \frac{1 + \cot^2 \theta}{\cot^2 \theta} \\ &= \tan^2 \theta + 1 = \sec^2 \theta \end{aligned} $ (ii) $ \begin{aligned} &\cos^2 \theta = \frac{1}{4}, &\cos \theta = \pm \frac{1}{2} \\ &\text{or } \tan^2 \theta = 3, &\tan \theta = \pm \sqrt{3} \\ &\theta = 60^\circ, 120^\circ, 240^\circ, 300^\circ \end{aligned} $ (b) $ \begin{aligned} &\tan \left(x + \frac{\pi}{4}\right) = \frac{1}{\sqrt{3}} \end{aligned} $ (combine terms in denominator. for use of $1 + \cot^2 \theta = \csc^2 \theta$ for completing the proof for use of $1 + \cot^2 \theta = \csc^2 \theta$ for completing the proof for using (i) to obtain a value for $\cos^2 \theta, \tan^2 \theta$ or $\sin^2 \theta$ and then taking the square root. for two correct values for two correct values and no extras in range. M1 for correct order of operations, can be implied by π				
(ii) $\begin{aligned} &= \tan^2 \theta + 1 = \sec^2 \theta \\ &\text{(ii)} \cos^2 \theta = \frac{1}{4}, \cos \theta = \pm \frac{1}{2} \\ &\text{or } \tan^2 \theta = 3, \tan \theta = \pm \sqrt{3} \\ &\text{or } \sin^2 \theta = \frac{3}{4}, \sin \theta = \pm \frac{\sqrt{3}}{2} \\ &\theta = 60^\circ, 120^\circ, 240^\circ, 300^\circ \end{aligned}$ (b) $\begin{aligned} &\tan \left(x + \frac{\pi}{4}\right) = \frac{1}{\sqrt{3}} \end{aligned}$ (c) $\begin{aligned} &\text{A1} \text{for completing the proof} \\ &\text{M1} \text{for using (i) to obtain a value for } \cos^2 \theta, \tan^2 \theta \text{ or } \sin^2 \theta \text{ and then taking the square root.} \end{aligned}$ (b) $\begin{aligned} &\tan \left(x + \frac{\pi}{4}\right) = \frac{1}{\sqrt{3}} \end{aligned}$ (c) $\begin{aligned} &\text{M1} \text{for two correct values and no extras in range.} \end{aligned}$ (b) $\begin{aligned} &\tan \left(x + \frac{\pi}{4}\right) = \frac{1}{\sqrt{3}} \end{aligned}$ (c) $\begin{aligned} &\text{M1} \text{for correct order of operations, can be implied by} \end{aligned}$			M1	
(ii) $\cos^2 \theta = \frac{1}{4}, \ \cos \theta = \pm \frac{1}{2}$ or $\tan^2 \theta = 3, \ \tan \theta = \pm \sqrt{3}$ or $\sin^2 \theta = \frac{3}{4}, \ \sin \theta = \pm \frac{\sqrt{3}}{2}$ $\theta = 60^\circ, 120^\circ, 240^\circ, 300^\circ$ (b) $\tan\left(x + \frac{\pi}{4}\right) = \frac{1}{\sqrt{3}}$ M1 for using (i) to obtain a value for $\cos^2 \theta, \tan^2 \theta$ or $\sin^2 \theta$ and then taking the square root. A1 for two correct values for two further correct values and no extras in range. M1 for correct order of operations, can be implied by π		$=\frac{1+\cot^2\theta}{\cot^2\theta}$	DM1	for use of $1 + \cot^2 \theta = \csc^2 \theta$
(b) $\tan\left(x+\frac{\pi}{4}\right) = \frac{1}{\sqrt{3}}$ or $\tan^2 \theta = 3$, $\tan \theta = \pm \sqrt{3}$ or $\sin^2 \theta = \frac{3}{4}$, $\sin \theta = \pm \frac{\sqrt{3}}{2}$ $\theta = 60^\circ, 120^\circ, 240^\circ, 300^\circ$ $\tan\left(x+\frac{\pi}{4}\right) = \frac{1}{\sqrt{3}}$ A1 for two correct values for two further correct values and no extras in range. M1 for correct order of operations, can be implied by π		$= \tan^2 \theta + 1 = \sec^2 \theta$	A1	for completing the proof
(b) $\theta = 60^{\circ}, 120^{\circ}, 240^{\circ}, 300^{\circ}$ and here here here here here here here her	(ii)	or $\tan^2 \theta = 3$, $\tan \theta = \pm \sqrt{3}$	M1	
		$\theta = 60^{\circ}, 120^{\circ}, 240^{\circ}, 300^{\circ}$		for two further correct values and no extras in
	(b)	$\tan\left(x + \frac{\pi}{4}\right) = \frac{1}{\sqrt{3}}$ $x = \frac{\pi}{6} - \frac{\pi}{4}, \ \frac{7\pi}{6} - \frac{\pi}{4}, \ \frac{13\pi}{6} - \frac{\pi}{4}$	M1	for correct order of operations, can be implied by $x = -\frac{\pi}{12}$
$x = \left(-\frac{\pi}{12}\right), \frac{11\pi}{12}, \frac{23\pi}{12}$ A1,A1 A1 for $x = \frac{11\pi}{12}$ A1 for $x = \frac{23\pi}{12}$		$x = \left(-\frac{\pi}{12}\right), \frac{11\pi}{12}, \frac{23\pi}{12}$	A1,A1	
If there are extra solutions in range in addition to the two correct ones then A1A0				

Mark Scheme Cambridge IGCSE – October/November 2016

Syllabus	Paper
0606	13

Qu	estion	Answer	Marks	Part Marks
9	(a) (i)	$^{18}C_5 = 8568 \mathrm{mmm}$	B1	
	(ii)	Either ${}^{10}C_4 \times {}^8C_1 = 1680$ ${}^{10}C_3 \times {}^8C_2 = 3360$ ${}^{10}C_2 \times {}^8C_3 = 2520$	B1 B2,1,0	for a correct plan B2 4 correct numbers with no extras B1 3 correct numbers (out of 3 or 4)
		$^{10}C_1 \times {}^8C_4 = 700$ Total = 8260	B1	for correct total
		Or <i>their</i> ${}^{18}C_5 - ({}^{10}C_5 + {}^{8}C_5)$ 8568 - (252 + 56) Total = 8260	B1 B1 B1 B1	for correct plan for 252 subtracted for 56 subtracted for correct total
	(b) (i)	${}^{10}P_6 = 151200$	B1	
	(ii)	$4 \times {}^{8}P_{4} \times 3$ $= 20160$	M1 A1	for correct unsimplified for correct numerical answer
	(iii)	Answer to (i) - ${}^{7}P_{6}$ =146160	M1 A1 A1	for correct plan for correct unsimplified for correct numerical answer
		Alternative: 1 symbol: 45360 2 symbols: 75600 3 symbols: 25200	B2,1,0	B2 for all 3 correct B1 for 2 correct (out of 2 or 3)
		Total: 146160	B1	for correct sum

Mark Scheme Cambridge IGCSE – October/November 2016

Syllabus	Paper
0606	13

Question	Answer	Marks	Part Marks
10 (i)	$f(x) = 3x^{2} - 4e^{2x} (+c)$ passing through (0,-3)	M1 A1 A1 DM1	for one correct term for one correct term $3x^2$ or $-4e^{2x}$ for a second correct term with no extras for correct method to find <i>c</i> .
	$-3 = 3 \times 0 - 4e^{0} + c$ f(x) = 3x ² - 4e ^{2x} + 1	A1	for correct equation
(ii)	f'(0) = -8	B1	for $m = \frac{1}{8}$
	Normal: $y + 3 = \frac{1}{8}x$	M1	for equation of normal using $m = \frac{1}{8}$
	8y + 24 = x y = 2 - 3x	DM1	for solving normal equation simultaneously with $y = 2 - 3x$ to get a value of x
	leads to $x = \frac{8}{5}$ oe	A1	for $x = \frac{8}{5}$, 1.6 oe
	Area = $=\frac{1}{2} \times 3 \times \frac{8}{5} = 2.4$ oe	B1	FT for a numerical answer equal to $\left \frac{1}{2} \times 3 \times \text{their } x\right $
11 (i)	a = 8t - 8	B1	for $8t-8$
	When $t = 3$, $a = 16$	B1	for 16
(ii)	0.5, 1.5	B1,B1	B1 for each
(iii)	$s = \frac{4}{3}t^3 - 4t^2 + 3t$	M1 A1	for at least two terms correct all correct
	when $t = \frac{1}{2}, s = \frac{2}{3}$	DM1	for calculating displacement when either $t = \frac{1}{2}$
			or $t = \frac{3}{2}$
	when $t = \frac{3}{2}, s = 0$	DM1	for calculating displacement at $t = \frac{1}{2}$ and
	total distance travelled = $\frac{4}{3}$	A1	doubling. for $\frac{4}{3}$ oe allow 1.33
	Alternative method	M1A1 DM1	As before DM1 for calculating displacement when $t = 0.5$ or for calculating distance travelled between $t = 0.5$
		DM1	and $t = 1.5$ DM1 for doubling distance travelled between $t = 0.5$ t = 0.5 and $t = 1.5$ or for adding that distance to displacement at $t = 0.5$
		A1	A1 for $\frac{4}{3}$ oe allow 1.33